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Abstract

In the paper, the non-continuous FEM with Trefftz base functions (FEMT) applied to direct and inverse problem of heat conduction
equation has been presented. For the finite number of base functions in each finite element the temperature field becomes non-continuous
on the border between elements. This non-continuity has been decreased with the penalty function added to optimised functional. The
numerical entropy distribution and energy dissipation function have been analysed on the common boundaries of elements. Increasing
the number of base functions in the finite element substantially decreases the inaccuracies of direct and inverse problem solution.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The classic finite element method (FEM) ensures conti-
nuity of an approximate solution on the neighbouring ele-
ments when applied to solving a partial differential
equation. Giving the continuity postulate up leads to
non-continuous Galerkin method [4,5]. A non-continuous
solution between elements can be also obtained from a
new definition of functional leading to the FEM. Namely,
the functional can be completed with terms directly refer-
ring to discontinuity of the solution between elements.
Such approach will be presented in the paper.

In FEM the base functions in general do not satisfy the
given differential equation. However, in particular cases for
some linear equation one can introduce the base functions
(called Trefftz functions) that fulfill the given differential
equation identically. Then, functional leading to the
FEMT (finite element method with Trefftz functions)
may have other interpretation than usually accepted one.
For heat conduction equation the functional is interpreted
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as mean-square sum of defects in heat flux flowing from
element to element [2], with condition of continuity of tem-
perature in the common nodes of elements. Full continuity
between elements is not ensured because of finite number
of base functions in each element. However, even the con-
dition of temperature continuity in nodes may be weak-
ened. We can assume no temperature continuity at any
point between elements. Instead, we can minimize defect
of energy dissipation between elements or numerical
entropy production [1,3], because discontinuity of heat flux
between elements implies discontinuity of energy dissipa-
tion and entropy production. Minimizing these three dis-
continuities may lay down new criteria for finding an
approximate solution of heat conduction equation. In the
paper, numerical defects of dissipation function as well as
numerical defects of entropy production intensity will be
presented and discussed for solutions obtained when mini-
mizing the heat flux discontinuity between finite elements.
2. Problem formulation

The main advantage of Trefftz functions is that they sat-
isfy differential equation identically. Applying the FEMT
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Nomenclature

ai; bi coefficients
a, aij penalty coefficients, a > 0
d distance from the x-axis to line of nodes (Fig. 4)
dT i ¼ Tþ � T� temperature jump in the node xi or at

the border Cij

dqi ¼ _qþ � _q� heat flux jump in the node xi

dH1 norm of the approximate solution
dqn norm of the numerical heat flux defect
dWc norm of the numerical energy dissipation defect
drc norm of the numerical entropy production de-

fect
Cw a sum of all boundaries between the neighbour-

ing elements

IðT Þ classical functional (formula (3))
k heat conductivity coefficient
_q heat flux
_qnþ � _qn� heat flux jump at the border Cij

QðT Þ functional including Trefftz functions (formula
(4))

r functional of entropy production
T temperatureeT approximate solution
H0;H1 boundary values of temperature
w energy dissipation functional
x spatial variable
xi nodes
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one ought to choose a proper functional. Minimizing the
functional leads to the best solution.

Consider the problem of looking for a proper functional
for the following one-dimensional problem:

d2u
dx2
¼ gðxÞ; x 2 ð0; 1Þ; uð0Þ ¼ u0; uð1Þ ¼ u1 ð1Þ

We can write the problem by means of homogeneous
equation

d2T
dx2
¼ 0; T ¼ u� d2

dx2

� ��1

g; T ð0Þ ¼ H0; T ð1Þ ¼ H1

ð1aÞ
Dividing the interval h0; 1i into subintervals we can find a
general solution of the problem in each subinterval in the
form

T i ¼ aixþ bi; xi < x < xiþ1; i ¼ 1; 2; . . . ;N ;

x1 ¼ 0; xNþ1 ¼ 1 ð2Þ
In general case, the function T does not have to be contin-
uous in the nodes xi. In order to find the coefficients ai; bi

we can construct two functionals that take into consider-
ation discontinuity of temperature between elements:

– the classic one:

IðT Þ ¼
Z 1

0

dT
dx

� �2

dxþ a
X

i

ðTþ � T�Þ2i

¼
X

i

Z xiþ1

xi

dT
dx

� �2

dxþ a
X

i

ðTþ � T�Þ2i ; a > 0

ð3Þ

– a functional including the Trefftz functions properties
and energy conservation between elements:
x11/3 2/3

( ) 133 1 Θ+−= xaT
~

Fig. 1. Analytical solution (dashed line) and discontinuous solution
(piecewise continuous line).
QðT Þ ¼
X

i

ð _qþ � _q�Þ2i þ aðTþ � T�Þ2i
h i

; a > 0;

_q ¼ �k
dT
dx

ð4Þ
The term aðTþ � T�Þ2 has a character of a penalty
function and vanishes for continuous solution. In fur-
ther considerations we will show that to obtain exact
(continuous) solution for 1D case it is enough to assume
a > 0.

Consider minimizing the functionals (3) and (4) with
respect to the coefficients ai; bi with the boundary condi-
tions taken into account and the interval h0; 1i divided into
three parts as shown in Fig. 1.

Minimizing the functional (3) with respect to the coeffi-
cients a1; a2; a3 and b2 leads to the system of three algebraic
equations with the following solution:
a1 ¼ a2 ¼ a3 ¼
a

1þ a
� ðH1 �H2Þ;

b2 ¼
1

2
H0 1� a

1þ a

� �
þ 1

2
H1 1� a

1þ a

� �
ð5Þ
Consider two particular cases:

(a) a ? 0 (Fig. 2a); then
a1 ¼ a2 ¼ a3 ¼ 0; b2 ¼
H0 þH1

2
;

d1T ¼ d2T ¼ 1

2
ðH0 �H1Þ ð6Þ
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Fig. 2. Solutions obtained when minimizing the functional (3).
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(b) a ?1 (Fig. 2b); then
a1 ¼ a2 ¼ a3 ¼ H1 �H0;

b2 ¼ H0; d1T ¼ d2T ¼ 0 ð7Þ
Hence, for the case (a) we obtain the discontinuous solu-
tion (Fig. 2a) and for the case (b) continuous solution
(Fig. 2b).

For finite values of a > 0 we arrive at a discontinuous
solution. Diagram of the solution for a = 1 is shown in
Fig. 2c.

Minimizing the functional Q(T) (see formula (4))
with respect to coefficients a1; a2; a3 and b2 leads to a
system of three algebraic equations with the following
solution:
a1 ¼ a2 ¼ a3 ¼ H1 �H0; b2 ¼ H0 for a > 0 ð8Þ
The same solution was obtained above for classic func-
tional (3) but for infinite value of a. It is an important
advantage of the functional (4) when compared to func-
tional (3).

If a > 0 then solution of the system (8) is a continuous
function which is plotted as a dashed line (analytical solu-
tion) in Fig. 1.

For a = 0 we obtain a1 ¼ a2 ¼ a3 and b2 indetermined
(an indeterminate solution).

Now we modify the functional (4) introducing numerical
defect of entropy production or of energy dissipation
instead of numerical defect of heat flux, _qþ � _q�. We can
define the following functionals:

– functional of entropy production with discontinuous
heat flux [3]

r ¼
X

i

Z
Ci

_qþ
Tþ
� _q�

T�|fflfflfflfflffl{zfflfflfflfflffl}
entropy

discontinuity

0BBB@
1CCCA

2

dC

26664

þa
Z

Ci

_qþ � _q�|fflfflfflffl{zfflfflfflffl}
heat flux

discontinuity

0B@
1CA

2

dC

37775 ¼ min; _q � _qn ¼ �k
oT
on

ð9Þ

– functional of entropy production with discontinuous
temperature [3]

r ¼
X

i

Z
Ci

_qþ
Tþ
� _q�

T�|fflfflfflfflffl{zfflfflfflfflffl}
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Fig. 3. Analytical solution (dashed line) and discontinuous solution
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– energy dissipation functional with discontinuous
temperature
w ¼
X

i

Z
Ci

ðln Tþ _qþ � ln T� _q�Þ2 dCþ a
Z

Ci

ðTþ � T�Þ2 dC

� �
¼ min; a > 0

ð11Þ

As an example let us consider temperature distribution
in the interval h0; 1i divided into two subintervals (Fig. 3)
The heat flux/temperature discontinuity on the border
between elements may be minimized by using the entropy
production intensity functional (formulas (9) and (10),
respectively).

Introducing temperature distribution in the intervals
h0; 0:5i and h0:5; 1i into the functionals (9) and (10) we
arrive at the following form of the entropy production
intensity functional:

– in the case of formula (9)

r ¼ a1
a1

2
þH0

� a2
�a2

2
þH1

� �2

þ aða1 � a2Þ2 ð12Þ

– in the case of formula (10)

r ¼ a1
a1

2
þH0

� a2
�a2

2
þH1

� �2

þ a H1 �H0 � a1 þ a2ð Þ=2½ �2

ð13Þ
Minimizing the functional (12) with respect to the coef-
ficients a1 and a2 and neglecting trivial solutions leads to
the following solution for a > 0:

a1 ¼ a2 ¼ H1 �H0 ð14Þ
Then dT = 0 and r = 0, i.e. we obtain as a solution contin-
uous function describing temperature with no discontinuity
on the border between elements.

For a = 0 (i.e. for the functional without penalty func-
tion) we arrive to an equation with infinite number of
solutions

a1a2 ¼ a1H1 � a2H2

Minimizing the functional (13) with respect to the coef-
ficients a1 and a2 and neglecting trivial solutions lead for
a > 0 to the solution (14), too.
Thus, it is clear from the two examples that minimiz-
ing the entropy production intensity functional with
term describing temperature/heat flux discontinuity
(aðTþ� T�Þ2 or að _qþ � _q�Þ2, respectively) leads to unique
solution.

Presented functionals (formulas (4), (9) and (10)) can be
easily formulated for 2D and 3D problems. Then the coef-
ficient a > 0 depends on the border between elements and is
to be calculated. In this case the procedure of minimizing
the functional leads to non-linear problem. The functionals
(4), (9) and (10) can be then written down in the same form,
namely:

u ¼
X

i

Z
Ci

ðF þ � F �Þ2 dCþ ai

Z
Ci

ðTþ � T�Þ2 dC

� �
;

ai > 0 ð15Þ

Here, for ai > 0

u ¼

Q if F ¼ _qn ¼ �k o
on T

r if F ¼ _qn
T ¼ �k o

on ln T

w if F ¼ _q ln T ¼ �k o
on T ðln T � 1Þ

8>><>>: ð16Þ

The functional (19) includes discontinuity

� of the function describing temperature or heat flux if
F ¼ _qn;
� of the entropy production if F ¼ _qn=T ;
� of the dissipation function if F ¼ _qn ln T .
3. Analysis of 2D problem solution

Let us consider an inverse problem for stationary 2D
heat conduction problem. It will be solved by using the
Trefftz function (in this case – harmonic functions). The
Trefftz functions satisfy the governing differential equation
and therefore it is convenient to use them as base functions
in FEM. Because of finite number of the base functions in
each element we can require continuity of temperature in
the nodal points only. Between the nodes the temperature
is not continuous.

Instead of this requirement we can minimize a func-
tional (similar to that one for 1D case – comp. formula
(4)) of a form [3]:

IðT Þ ¼
X

ij

Z
Cij

ð _qnþ � _qn�Þ2 dCij þ aij

Z
Cij

ðTþ � T �Þ2 dCij

" #
;

aij > 0 ð17Þ

The procedure of finding the inverse problem solution
consists in reconstructing an unknown boundary condition
when measured values of temperature along a line inside
the body (continuous problem) or at chosen points of the
line (discrete problem) are known. In Fig. 4 the points
are chosen on a line parallel to 0x axis (distant for d from
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the axis). In a particular case for d = 0 an inverse problem
becomes a direct one. For numerical calculation the consid-
ered domain (a square, see Fig. 4) is divided into four finite
elements. In each element 12 Trefftz functions are taken as
base functions.

Visualization of non-continuous solution of a 2D prob-
lem is presented in Fig. 4a. The points with given values of
temperature are shown in Fig. 4b.

To solve an inverse problem (as well as a direct one) two
functionals can be used:

– for a problem with pointwise continuous temperature
between elements [2]:

IðT Þ ¼
X

ij

Z
Cij

ð _qnþ � _qn�Þ2 dCij ð18Þ

– for a problem with non-continuous temperature
between elements (aij = a = const., generalized func-
tional (4))
QðT Þ ¼
X

ij

Z
Cij

ð _qnþ � _qn�Þ2 dCijþa
Z

Cij

Tþ �T�ð Þ2 dCij

" #
;

a> 0 ð19Þ

Approximate solution fully satisfies boundary conditions
at nodal points.

In order to test the method the analytical solution is
adopted in the following form:

T eðx; yÞ ¼
cos p

2
x

� �
sinh p

2
ð1� yÞ

� �
sinh p

2

� � ð20Þ

Accuracy of the approximate solution (let us denote it aseT Þ is estimated in the norm dH1 (see formula (21)). Also
the accuracy of the heat flux dqn (see (22)) entropy produc-
tion drc (see (23)) and energy dissipation dWc (see (24)) is
investigated. Signs plus and minus denote sides of the bor-
der between two elements.
The formulas read:

– norm of the approximate solution:

dH 1 ¼

Z
X
ðeT � T eÞ2 þ

oeT
ox
� oT e

ox

 !2

þ oeT
oy
� oT e

oy

 !2
24 35dX

Z
X

T 2
e þ

oT e

ox

� �2

þ oT e

oy

� �2
" #

dX

0BBBBBB@

1CCCCCCA

1=2

� 100 ½%� ð21Þ

– norm of the numerical heat flux defect:

dqn ¼

Z
Cw

oeT
on

 !
þ

� oeT
on

 !
�

" #2

dC

Z
Cw

1

2

oeT
on

 !
þ

þ oeT
on

 !
�

 !" #2

dC

0BBBBB@

1CCCCCA

1=2

� 100 ½%� ð22Þ

– norm of the numerical entropy production defect:

drc ¼

Z
Cw

1eT � oeTon

 !
þ

� 1eT � oeTon

 !
�

" #2

dC

Z
Cw

1

2

1eT � oeTon

 !
þ

þ 1eT � oeTon

 !
�

 !" #2

dC
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1CCCCCA

1=2

� 100 ½%� ð23Þ

– norm of the numerical energy dissipation defect:

dWc ¼

Z
Cw

ln eT	 
 oeT
on

 !
þ

� ln eT	 
 oeT
on

 !
�

" #2

dC

Z
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1

2
ln eT	 
 oeT
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The boundary Cw is a sum of all boundaries between the
neighbouring elements.

In the numerical example the functional (19) is used. In
the case of pointwise continuous temperature on Cw the
procedure of minimizing the functional (19) diminishes dis-
continuities of temperature between nodes. The applied
method of penalty function with the parameter a > 0 has
an effect on decreasing discontinuities of temperature, heat
flux, numerical entropy production and energy dissipation
on Cw. Values of the norm dH1 in the considered square as
a function of parameter a and distance d of thermoelements
from the 0x axis (d = 0 denotes a direct problem) are pre-
sented in Table 1 for pointwise continuous problem as well
as for the non-continuous one. Data from Table 1 are pre-
sented in graphical form in Fig. 5 for pointwise continuous
problem and in Fig. 6 for the non-continuous one.

Notice, that for the pointwise continuous temperature a
practically does not effect the solution for d < 0:5 (points
with given temperature values are in the first layer of ele-
ments). For non-continuous FEMT small parameter a gen-
erally increases temperature inaccuracies while big a
decreases them. High values of the norm dH1 for a =
0.001 and d ¼ 0:20 as well as for a = 1000 and d ¼ 0:60
result from temperature discontinuity for x ¼ 0:5 and too
small number of base functions.
0
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 6. Norm dH1 for different values of a (FEMT non-continuous, 12
base functions).
3.1. Pointwise continuous problem

Errors of the heat flux, entropy production and energy
dissipation on the border between elements for the intersec-
tion x = 0.5 as functions of parameter a and distance d are
presented in Table 2. The results analogous to those from
Table 2 but for the intersection y = 0.5 are presented in
Table 3. In Fig. 7 the results presented in Table 2 are shown
in graphic form for a = 1. Graphic form of the results from
Table 3 looks likewise.

Again we see that small parameter a generally increases
heat flux, entropy production and energy dissipation
defects; big a decreases them. Only for d ¼ 0:5 the norms
Table 1
Norm dH1 as a function of the distance d from the boundary y = 0 (12 base f

d FEMT pointwise continuous

a = 0.001 a = 1 a = 1000

0.00 0.0042 0.0042 0.0042
0.10 0.0046 0.0046 0.0047
0.20 0.0081 0.0081 0.0081
0.30 0.0184 0.0184 0.0178
0.40 0.0199 0.0199 0.0115
0.50 0.3471 0.3471 0.3471
0.60 0.1459 0.1460 0.5723
0.70 0.1655 0.1656 0.3076
0.80 0.1479 0.1479 0.2220
0.90 0.3426 0.3425 0.3153
0.95 0.7568 0.7527 0.2762
0.99 0.2097 0.2101 0.0958
are relatively high; it is a result of taking data from the bor-
der between elements and insufficient number of base
functions.
3.2. Non-continuous problem

Errors of the heat flux, entropy production and energy
dissipation on the border between elements for the intersec-
tion x = 0.5 as functions of parameter a and distance d are
unctions in an element)

FEMT non-continuous

a = 0.001 a = 1 a = 1000

0.0207 0.0141 0.0161
0.0852 0.0153 0.0168

45.7378 0.0208 0.0204
0.1805 0.0376 0.0333
0.3494 0.0603 0.0749
0.1856 0.0383 0.0523
0.7475 1.2637 15.2711
0.3954 0.1711 0.3990
0.1931 0.0786 0.1323
0.2029 0.0753 0.3492
0.1052 0.0679 0.5004
0.3669 0.1173 0.7800



Table 2
The norms dqn; drc; dWc as functions of the distance d from the boundary y = 0 for a = 0.001; 1; 1000

d Heat flux dqn (%) Entropy drc (%) Energy dissipation dWc (%)

a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000

0.00 0.027 0.027 0.027 0.027 0.027 0.028 0.027 0.027 0.027
0.10 0.017 0.017 0.017 0.015 0.015 0.015 0.019 0.019 0.018
0.20 0.027 0.027 0.026 0.030 0.030 0.029 0.026 0.026 0.026
0.30 0.092 0.092 0.088 0.108 0.108 0.104 0.085 0.085 0.081
0.40 0.028 0.028 0.019 0.030 0.030 0.017 0.027 0.027 0.020
0.50 0.196 0.196 0.198 0.230 0.230 0.236 0.182 0.182 0.180
0.60 0.040 0.040 0.260 0.050 0.050 0.318 0.036 0.036 0.234
0.70 0.037 0.038 0.117 0.046 0.046 0.143 0.033 0.034 0.104
0.80 0.343 0.343 0.120 0.397 0.398 0.147 0.319 0.319 0.108
0.90 0.467 0.465 0.042 0.555 0.553 0.034 0.427 0.425 0.045
0.95 1.108 1.098 0.047 1.314 1.303 0.042 1.014 1.006 0.049
0.99 0.032 0.033 0.140 0.038 0.039 0.161 0.030 0.030 0.130

Cw is here the intersection x = 0.5 (FEMT pointwise continuous, 12 base functions in an element).

Table 3
The norms dqn; drc; dWc as functions of the distance d from the boundary y = 0 for a = 0.001; 1; 1000

d Heat flux dqn (%) Entropy drc (%) Energy dissipation dWc (%)

a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000

0.00 0.020 0.020 0.002 0.020 0.020 0.002 0.021 0.021 0.002
0.10 0.019 0.019 0.002 0.018 0.018 0.002 0.019 0.019 0.002
0.20 0.015 0.015 0.003 0.016 0.016 0.002 0.015 0.015 0.003
0.30 0.019 0.019 0.003 0.017 0.017 0.003 0.019 0.019 0.003
0.40 0.019 0.019 0.007 0.018 0.018 0.005 0.020 0.020 0.007
0.50 0.119 0.119 0.004 0.097 0.097 0.004 0.132 0.132 0.004
0.60 0.028 0.028 1.700 0.017 0.017 1.307 0.033 0.033 1.845
0.70 0.033 0.033 0.019 0.021 0.021 0.016 0.038 0.039 0.020
0.80 0.088 0.088 0.004 0.074 0.074 0.004 0.093 0.093 0.004
0.90 0.128 0.128 0.016 0.097 0.097 0.010 0.142 0.142 0.018
0.95 0.313 0.310 0.014 0.242 0.240 0.008 0.346 0.343 0.016
0.99 0.044 0.044 0.013 0.027 0.027 0.007 0.052 0.052 0.015

Cw is here the intersection y = 0.5 (FEMT pointwise continuous, 12 base functions in an element).
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Fig. 7. The norm dqn; drc; dWc as functions of the distance d from the
boundary y = 0 along internal line of intersection x = 0.5 for a = 1
(FEMT pointwise continuous, 12 base functions in an element).
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presented in Table 4. In Table 5 results for y = 0.5 are pre-
sented. In Fig. 8 the figures from Table 4 for a = 1 are
shown in graphic form. The graphic form of the results
from Table 5 looks likewise.
Again we see that small parameter a generally increases
heat flux, entropy production and energy dissipation
defects; big a decreases them. Relatively high values of
the norms for all a’s and d ¼ 0:60 result from temperature
discontinuity on the border between elements and too
small number of base functions.

Errors of the entropy production in the intersections
x = 0.5 and y = 0.5 for 24 base functions are presented in
Tables 6 and 7.

The numerical results concerning the direct problem
show that the differences in norms between solutions
obtained with pointwise elements and with non-continuous
elements do not exceed 0.01%. Greater differences appear
when the inverse problem is being solved. However, it is
possible to diminish them essentially by increasing the
number of base functions in each element.

The crucial advantage of the non-continuous approach
is diminishing inaccuracy of the solution for constant a
when enlarging the number of base functions in an element.
For a 2 h0:001; 1000i, 24 base functions and d 2 h0; 0:99i
the relative errors of the entropy production intensity do
not exceed 0.029% (comp. Tables 6 and 7).



Table 4
The norms dqn; drc; dWc as functions of the distance d from the boundary y = 0 for a = 0.001; 1; 1000

d Heat flux dqn (%) Entropy drc (%) Energy dissipation dWc (%)

a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000

0.00 0.006 0.002 0.002 0.011 0.002 0.002 0.006 0.002 0.002
0.10 0.013 0.002 0.002 0.014 0.003 0.002 0.014 0.002 0.002
0.20 10.506 0.002 0.011 10.258 0.003 0.013 11.092 0.002 0.011
0.30 0.032 0.008 0.010 0.051 0.013 0.011 0.041 0.007 0.010
0.40 0.064 0.018 0.041 0.071 0.024 0.045 0.065 0.016 0.039
0.50 0.034 0.003 0.003 0.042 0.007 0.003 0.035 0.003 0.003
0.60 0.113 0.072 11.332 0.115 0.061 12.652 0.118 0.080 10.769
0.70 0.054 0.025 0.099 0.055 0.028 0.111 0.056 0.024 0.094
0.80 0.016 0.003 0.010 0.017 0.006 0.011 0.016 0.002 0.009
0.90 0.031 0.009 0.094 0.033 0.007 0.104 0.032 0.010 0.089
0.95 0.018 0.001 0.073 0.021 0.003 0.081 0.018 0.001 0.070
0.99 0.000 0.003 0.051 0.023 0.005 0.057 0.009 0.003 0.049

Cw is here the intersection x = 0.5 (FEMT non-continuous, 12 base functions in an element).

Table 5
The norms dqn; drc; dWc as functions of the distance d from the boundary y = 0 for a = 0.001; 1; 1000

d Heat flux dqn (%) Entropy drc (%) Energy dissipation dWc (%)

a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000

0.00 0.002 0.002 0.002 0.014 0.003 0.002 0.004 0.002 0.002
0.10 0.002 0.002 0.002 0.092 0.003 0.002 0.027 0.002 0.002
0.20 0.738 0.002 0.003 59.461 0.003 0.002 16.102 0.003 0.003
0.30 0.005 0.003 0.003 0.091 0.001 0.003 0.027 0.004 0.003
0.40 0.015 0.004 0.007 0.051 0.003 0.005 0.026 0.006 0.007
0.50 0.008 0.002 0.004 0.021 0.002 0.004 0.013 0.002 0.004
0.60 0.029 0.046 1.700 0.040 0.031 1.307 0.042 0.060 1.845
0.70 0.013 0.005 0.019 0.032 0.007 0.016 0.020 0.008 0.020
0.80 0.003 0.001 0.004 0.020 0.003 0.004 0.008 0.002 0.004
0.90 0.006 0.002 0.016 0.055 0.003 0.010 0.018 0.003 0.018
0.95 0.003 0.001 0.014 0.038 0.002 0.008 0.012 0.001 0.016
0.99 0.001 0.001 0.013 0.020 0.003 0.007 0.006 0.002 0.015

Cw is here the intersection y = 0.5 (FEMT non-continuous, 12 base functions in an element).
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Fig. 8. The norms dqn; drc; dWc as functions of the distance d from the
boundary y = 0 along internal line of intersection x = 0.5 for a = 1
(FEMT non-continuous, 12 base functions in an element).
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4. The FEMT in comparison with the classic FEM

To compare FEM with Trefftz base functions (FEMT)
with the classic FEM approach, the FEM solution of the
inverse problem for the square considered above is ana-
lysed. As a criterion of similarity of the approaches a num-
ber of nodes inside or on the boundary of the square is
used. For the FEM the elements with four nodes and, con-
sequently, the simplest set of base functions: ð1; x; y; xyg
have been applied.

In the case of FEMT the considered square has been
divided into four finite elements with 12 or 24 Trefftz func-
tions as base functions. For 12 Trefftz functions in an ele-
ment we obtain 33 nodes in the square (24 on the boundary
and 9 inside). In the case of 24 of them we have 69 nodes
(48 on the boundary and 21 inside).

The variants of number of elements in FEM are pre-
sented in Table 8.

Using FEM to solve the inverse problem in the square
gives acceptable solution only for the first row of elements.
Even for exact values of the given temperature the results
are encumbered with relatively high error (comp. Fig. 9).

For the next row of the elements the FEM solution
is entirely not acceptable. When the distance d (comp.
Fig. 4) is greater than the size of the element, an instability
of the numerical solution appears independently of the
number of finite elements. For 16 elements the inaccuracy
on the border of the first row of elements is not too high
(comp. Fig. 9) but then increases quickly. For 36 and 144



Table 6
The norm of entropy production drc as functions of the distance d from the boundary y = 0 for a = 0.001; 1; 1000

d FEMT pointwise continuous FEMT non-continuous

a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.10 0.00000 0.00000 0.00000 0.00038 0.00000 0.00000
0.20 0.00000 0.00000 0.00000 0.00048 0.00004 0.00000
0.30 0.00000 0.00000 0.00000 0.00006 0.00000 0.00000
0.40 0.00000 0.00000 0.00000 0.00040 0.00000 0.00000
0.50 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.60 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.70 0.00000 0.00000 0.00000 0.00030 0.00000 0.00001
0.80 0.00000 0.00000 0.00000 0.00004 0.00000 0.00000
0.90 0.00000 0.00000 0.00000 0.00006 0.00003 0.00000
0.95 0.00000 0.00000 0.00000 0.00428 0.00004 0.00001
0.99 0.00000 0.00000 0.00000 0.00002 0.00001 0.00000

Cw is here the intersection y = 0.5 (24 base functions in an element).

Table 7
The norm of entropy production drc as functions of the distance d from the boundary y = 0 for a = 0.001; 1; 1000

d FEMT pointwise continuous FEMT non-continuous

a = 0.001 a = 1 a = 1000 a = 0.001 a = 1 a = 1000

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.10 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000
0.20 0.00000 0.00000 0.00000 0.00005 0.00009 0.00000
0.30 0.00000 0.00000 0.00000 0.00002 0.00001 0.00000
0.40 0.00000 0.00000 0.00000 0.00016 0.00000 0.00000
0.50 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.60 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.70 0.00000 0.00000 0.00000 0.00016 0.00000 0.00004
0.80 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000
0.90 0.00000 0.00000 0.00000 0.00001 0.00020 0.00006
0.95 0.00000 0.00000 0.00000 0.00265 0.00029 0.00028
0.99 0.00000 0.00000 0.00000 0.00001 0.00004 0.00002

Cw is here the intersection x = 0.5 (24 base functions in an element).

Table 8
Number of elements in the FEM and FEMT for comparing the results of calculation for the inverse problem in a square

Total number of elements Number of the boundary nodes Number of the internal nodes Criterion of similarity

FEMT 12 Trefftz functions FEM FEMT 12 Trefftz functions FEM FEMT 12 Trefftz functions FEM

4 16 24 16 9 9 Internal nodes number
4 36 24 24 9 25 Boundary nodes number
FEMT 24 Trefftz functions FEM FEMT 24 Trefftz functions FEM FEMT 24 Trefftz functions FEM
4 144 48 48 21 121 Boundary nodes number
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Fig. 9. Norm dH1 for the FEM solution for different values of d.
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elements one observes violent loss of stability; the calcu-
lation error becomes greater than 300%. Paradoxically,
the greater number of elements the quicker the insta-
bility appears even though the accuracy of solution in
the first row of elements becomes better (comp. also
Figs. 10–12).

Errors of the heat flux, entropy production and energy
dissipation on the border between elements for the intersec-
tion x = 0.5 as functions of parameter a and distance d are
presented in Figs. 10–12 for the FEM solution for 16, 36
and 144 elements, respectively. The results are similar to
those presented in Fig. 9.
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The classic FEM leads to much worse results than the
FEMT because the latter makes use of the Trefftz
functions that satisfy the energy equation. This way the
physical meaning of the results is ensured. Moreover,
minimizing the numerical defect of energy dissipation or
numerical entropy production on the borders between ele-
ments we do not ‘‘force” the solution to be continuous
between elements. However, thanks to introducing the
term that has a character of a penalty function and van-
ishes for continuous solution, the discontinuities are
almost negligible and the physical character of the solution
is preserved.
5. Inaccurate input data in the FEMT

To analyse an effect of the input data inaccuracy on the
results in FEMT we introduce a disturbance (not exceeding
1% of the exact value) to the temperature obtained from
the formula (20) and then used as an input data in the
above presented analysis. Thus, the given temperature is
obtained from the formula

T inaccðx;yÞ ¼
cos p

2
x

� �
sinh p

2
ð1� yÞ

� �
sinh p

2

� � � 1þrð1� yÞ
100

� �
ð25Þ

with jrj 6 1 standing for a random error.



Table 9
Norm dH1 as a function of the distance d from the boundary y = 0 (12
base functions in an element) for inaccurate input data

d Pointwise continuous FEMT

a ¼ 0:001 a = 1 a = 1000

0.00 1.05 1.27 1.35
0.10 2.82 3.37 2.65
0.20 5.98 6.52 11.06
0.30 12.55 25.17 69.09
0.40 86.82 29.68 30.83
0.50 115.18 42.95 43.46
0.60 43.58 171.41 4.64
0.70 37.04 46.55 22.83
0.80 15.22 200.57 49.98
0.90 33.79 83.37 56.17
0.95 42.17 15.31 18.23
0.99 7.57 3.98 1.48
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In order to illustrate an influence of such a disturbance
for calculation stability let us notice that for fixed x the
function Tinacc(x,y) is an exponential function of the vari-
able y. It means that along the y-axis an inaccuracy of
the input data (temperature at some internal points) is
enhanced exponentially. It is much worse situation than
in the 1D case, because then an inaccuracy is enhanced
linearly.

The pointwise continuous FEMT (12 base functions in
the element) applied to inaccurate input data produced
for x = d according to formula (25) obviously leads to
the inaccurate results. The norm dH1 as a function of the
distance d from the boundary y = 0 is presented in Table 9.

The worst results are obtained on the border between
elements. However, the results for d 6 0.3 seem to be
acceptable for the three analysed values of the parameter
a. In the case of inaccurate input data the question of the
most advantageous value of a seems to be more complex
than in the case of the exact input data. However, the
results presented in Table 9 suggest that for d 6 0.3 small
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Fig. 13. The norm dqn; drc; dWc as functions of the distance d from the
boundary y = 0 along internal line of intersection x = 0.5 for a = 1
(FEMT pointwise continuous, 12 base functions in an element).
values of the parameter a are more advantageous for calcu-
lation than the greater ones.

Errors of the heat flux, entropy production and energy
dissipation on the border between elements for the intersec-
tion x = 0.5 as functions of parameter a and distance d are
presented in Fig. 13. The norms dqn; drc; dWc do not exceed
3.8% for d 6 0.2; for greater values of d they rise to achieve
their maximum for d = 0.8. Also in this case the stabilising
role of the Trefftz functions is observable.

6. FEMT versus other methods of solving the inverse

problems

FEM with Trefftz base functions applied to the test
problems with accurate input data in 1D and 2D leads to
almost exact results both, for direct as well as for inverse
problem. The term that has a character of a penalty func-
tion and vanishes for continuous solution regularises the
solutions and the parameter a is something like a regularis-
ing parameter. Moreover, to find a proper value of the
parameter does not seem to be difficult. This is the most
important difference between the FEMT and – for an
instance – the Tikhonov regularisation method.

The Tikhonov method is sometimes combined with
physical circumstances. One can find such combination in
a paper of Dulikravitch et al. [6], in which a formulation
for the inverse determination of unknown steady boundary
conditions in heat conduction and thermoelasticity for
three-dimensional problems was developed using FEM
and three regularization methods (all of them based on
Tikhonov regularisation). One of them uses Laplacian
smoothing of the unknown temperatures and displace-
ments only on the boundaries where the boundary condi-
tions are unknown. This method could be considered a
‘‘second order” Tikhonov method.

The Generalized Eigensystem techniques was developed
for solving inverse boundary value problem in steady heat
conduction, and found out that the vector expansion meth-
ods often give superior results to those obtained with
standard Tikhonov regularization method (comp. [7]).
However, the method has rather mathematical than physi-
cal background.

Many mathematical methods that are employed to solve
the inverse problem, e.g. a gradient-based inverse method
combined with B-spline function specification (comp. [8]),
the truncated singular value decomposition (SVD) method
often used to solve this ill-conditioned system of algebraic
equations (comp. [9]), and many others. However, practi-
cally almost none of them exploits physics in order to reg-
ularise an approximate solution.

The use of Trefftz functions as base functions in FEMT
ensures physical meaning of the results and therefore seems
to be more efficient that the use of polynomial base func-
tions. This way, independently of inaccuracies of the input
data, the approximate solution cannot be totally wrong,
because it consists of the functions satisfying the energy
equation.
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7. Final remarks

In the analysed inverse problem, minimizing the numer-
ical entropy production defect, energy dissipation or heat
flux defect on the border between elements practically leads
to the same results. Minimizing the heat flux jump between
elements ensures less sensitivity of the approximate solu-
tion of an inverse problem on the thermoelement location.
In other words we minimize the numerical energy defect
caused by the finite number of base functions.

Notice that entropy production functional and energy
dissipation functional are not quadratic functions of the
coefficients at the base functions in elements. Hence, mini-
mizing the functionals leads to non-linear system of alge-
braic equations. It seems to be the only disadvantage of
the approach presented in this paper when compared with
minimizing mean-square defects of heat flux (formula (18));
the latter leads to linear system of equations.
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